Skip to player
Skip to main content
Skip to footer
Search
Connect
Watch fullscreen
Like
Comments
Bookmark
Share
Add to Playlist
Report
Pandas Class 05: Describing & Summarizing Data in Pandas
Nafees AI Lab
Follow
5/26/2025
Explore quick summary statistics and how to describe datasets in Pandas.
#DataSummary #DescribeData #PandasStats
Category
📚
Learning
Transcript
Display full video transcript
00:00
So in this lecture, we will describe data.
00:02
We will describe data for a important parameter.
00:06
We will use attributes to describe data.
00:11
Now, it is important that the attributes are found in the function.
00:17
And the function and attributes are found in the way.
00:20
First of all, we have noted that we have read CSV or to CSV followed with round brackets.
00:29
So, if you have a function, you can call it with round brackets.
00:34
When you call it, you want to use the function.
00:38
However, when you call it, you can call it with round brackets.
00:43
It is not followed.
00:45
It is used for a simple value.
00:47
We have data in the phone.csv.
00:50
So, if you call it, you can call it with the function.csv.
00:55
Now, remember, the types are basically.
01:00
It is attributes.
01:02
It is not followed by round brackets.
01:05
Okay?
01:06
So, the types are data.csv.
01:08
We will explain how to execute.
01:12
As you see, we have columns.
01:13
Now, we have two columns, memory and sim card.
01:15
They are in type.
01:16
And the other columns are object type.
01:19
So, if you want to see columns exist in my data.
01:25
Again, this is my data.
01:27
Data frame is in my phone.
01:29
So, if you want to select columns
01:37
We can use columns.
01:38
We will set columns to this column.
01:39
So, the forms are in type.
01:41
We will select columns.
01:44
We will select columns.
01:46
So, if I zoom in here.
01:48
Then, columns are in type.
01:50
So, we need columns in type.
01:51
We can mix columns.
01:52
So, columns do we need columns.
01:53
I will select columns.
01:54
If I spend columns in times.
01:56
Now, at the moment, if you think this is a very useful feature, this is a very useful feature.
02:06
When we go to the next step, you can see how important it is.
02:10
Now, let's go to the next step.
02:12
If you look at the next step, you can show the next step.
02:16
Now, let's go to the next step.
02:36
If you look at the next step, you can see the next step.
02:42
Now, let's go to the next step.
02:52
Now, let's go to the next step.
02:54
Now, let's go to the next step.
02:59
Now, let's go to the next step.
03:11
Now, let's go to the next step.
03:21
Now, let's go to the next step.
03:23
However, the price is followed by a dollar sign.
03:26
So, if you look at the price, if you look at the next step,
03:31
you can see the next step.
03:33
Now, let's go to the next step.
03:35
Now, let's go to the next step.
03:37
Now, let's go, let's go.
03:38
and so on.
03:49
Now we have two things to use.
03:52
We have a column attribute,
03:56
D-type attribute,
03:57
index.
03:59
We have a simple method
04:01
to combine.
04:03
And that is info.
04:05
We have a simple method.
04:12
As you guessed,
04:13
I have a simple method.
04:15
Execute.
04:16
Now we have data type,
04:19
we have indexing and much more information.
04:25
This is very cool.
04:27
Mean values can be calculated.
04:30
Again,
04:31
we have data frame.
04:33
I have a function called here.
04:36
Means,
04:37
this is mean.
04:38
This is only int columns
04:41
mean value display.
04:43
Int columns mean value display.
04:46
Okay?
04:48
Now,
04:50
if you have a hypothetical time series data,
04:53
let's say,
04:54
test is equal to
04:55
pd.series
04:57
with capital S
04:58
R I E S
04:59
I E S
05:00
And in this series,
05:01
I will generate a series.
05:02
I will generate one,
05:03
two, three.
05:04
Execute.
05:05
Test.
05:06
Now,
05:07
test.mean value call.
05:09
Test.mean
05:11
And this is mean method.
05:13
I will execute.
05:14
Two.
05:15
This means,
05:16
this data series,
05:18
mean,
05:19
two.
05:20
How do we count?
05:22
One plus two?
05:23
Three.
05:24
Three plus three?
05:25
Six.
05:26
Six.
05:27
Total element is how many?
05:28
Three.
05:29
Six divided by three is equal to two.
05:31
So,
05:32
our answer is correct.
05:33
So,
05:34
mean we have a correct term.
05:35
This is so cool.
05:36
So,
05:37
what current kām ہم کر سکتے ہیں?
05:38
وہ یہ
05:39
کہ ہم individual
05:41
columns
05:42
کو select کر سکتے ہیں.
05:43
اب تک جو جتنا بھی کام ہم نے کیا
05:44
وہ تو ہم پورے کے پورے data frame
05:46
کے اوپر کرتے تھے نا.
05:47
اس پورے data frame کے اوپر.
05:48
However, imagine کریں
05:49
میں
05:50
mean لینا چاہتا ہوں
05:51
لیکن میں mean
05:52
صرف
05:53
let's say
05:54
same card کا لینا چاہتا ہوں.
05:55
وہ کیسے لوں گا.
05:56
حضر آپ نے غور کرنا ہے.
05:57
یہ میرا data frame ہے.
05:59
میں اس کو execute کرتا ہوں.
06:00
یہ data frame آگیا نا.
06:01
اب اس data frame کو اگر میں پکڑ لوں
06:04
اور کہوں کہ
06:06
square brackets ڈالو
06:08
اور اس square brackets کے اندر string میں
06:10
let's say میں sim card ڈال دیتا ہوں.
06:12
اس column کا نام.
06:14
ٹھیک ہے.
06:15
اب میں اس کو execute کرتا ہوں.
06:16
تو آپ ذرا غور کریں
06:17
یہ صرف وہی column show ہو رہا ہے
06:19
جس کا میں یہاں پر نام ڈال رہا ہوں.
06:21
مثال کے طور پر
06:22
میں اس میں memory ڈال رہا ہوں.
06:23
memory
06:24
یا memory
06:25
execute کرتے ہیں
06:28
اور
06:29
as you see ہمارے پاس memory آ رہا ہے.
06:31
نہ صرف یہ
06:32
بلکہ اب آپ اس کے اوپر
06:33
function call کر سکتے ہیں.
06:34
مثال کے طور پر
06:35
آپ یہی پہ کہیں sum
06:36
execute کیا
06:37
تو یہ آپ کو sum دے رہا ہے.
06:38
پورے column کا.
06:39
اگر اس کا dot sum
06:40
call کرتے ہیں
06:41
تو کبوم شاکالہ کا.
06:42
یہ آپ کو
06:43
سارے column کا
06:44
sum return کر رہا ہے.
06:46
Is this cool?
06:47
Is this very cool.
06:48
Okay.
06:51
تو give it a go.
06:53
اس کو try کریں ایک دفعہ.
06:54
دیکھیں
06:55
کہ آپ کے پاس کیا result آ رہا ہے
06:56
and then we will start it.
06:58
تو
Recommended
0:20
|
Up next
The daily life of pandas 🐼(57) #Panda #Lovely
Panda Life
4/30/2025
7:03
How to get absolute value using abs() method and pandas
Jit Dutta
4/12/2023
0:15
The daily life of pandas 🐼(56) #Panda #Lovely
Panda Life
4/30/2025
0:12
The daily life of pandas 🐼(53) #Panda #Lovely
Panda Life
4/29/2025
0:15
The daily life of pandas 🐼 #Panda #Lovely
Panda Life
6/16/2025
0:15
The daily life of pandas 🐼(54) #Panda #Lovely
Panda Life
4/29/2025
0:54
The daily life of pandas 🐼(77) #Panda #Lovely
Panda Life
5/7/2025
7:42
The daily life of pandas 🐼(100) #Panda #Lovely
Panda Life
5/17/2025
1:09
Global captive panda population increases to 673 | The Nation
The Nation Thailand
10/19/2022
0:15
The daily life of pandas 🐼(58) #Panda #Lovely
Panda Life
4/30/2025
2:00
The daily life of pandas 🐼(99) #Panda #Lovely
Panda Life
5/17/2025
9:38
Episode 1 – The Curious Boy from Ulm (1879-1895)
Nafees AI Lab
6/8/2025
0:37
Top Fully Funded Scholarships in Germany 2025 🇩🇪 | Apply Now!
Nafees AI Lab
6/3/2025
0:25
The Boy and the Dragon – “A Friend in the Sky”
Nafees AI Lab
6/3/2025
1:03
Why Do Rainbows Appear? 🌈 | Physics in Everyday Life
Nafees AI Lab
6/3/2025
0:28
Albert Einstein: The Genius Who Changed Time
Nafees AI Lab
6/1/2025
0:40
Stephen Hawking’s Life in 60 Seconds: From Wheelchair to the Universe
Nafees AI Lab
6/1/2025
0:36
The Forgotten Night Hitler Was Nearly Killed
Nafees AI Lab
5/29/2025
0:31
Dilip Kumar – The Tragedy King of Bollywood
Nafees AI Lab
5/29/2025
0:45
Marlon Brando – The Rebel Who Redefined Acting | Nafees AI Lab
Nafees AI Lab
5/29/2025
0:29
Charles Darwin – Evolution & Natural Selection | Nafees AI Lab
Nafees AI Lab
5/28/2025
0:30
Isaac Newton – Gravity, Motion & Genius | Nafees AI Lab
Nafees AI Lab
5/28/2025
0:52
Allama Iqbal – Poet of the East | Nafees AI Lab
Nafees AI Lab
5/28/2025
0:53
Marie Curie – Life & Achievements | Nafees AI Lab
Nafees AI Lab
5/28/2025
0:42
Albert Einstein – Life, Legacy & Discoveries | Nafees AI Lab
Nafees AI Lab
5/28/2025